
Yefim S. answered 01/15/21
Math Tutor with Experience
y'' + 9y = 0;
y = c0 + c1x + c2x2 + ... + cnxn + ... = ∑0
∞cnxn, y' = ∑ 1∞ncnxn - 1; y'' = ∑2∞n(n - 1)cnxn - 2;
∑2∞n(n - 1)cnxn - 2 + 9∑0∞cnxn = 0; ∑0∞[(n + 1)(n + 2)cn + 2 + 9cn]xn = 0.
So, (n + 1)(n + 2)cn + 2 + 9cn = 0, n = 0, 1, 2, 3, ...
cn + 2 = - 9cn/[(n + 1)(n + 2)]
n = 0, c2 = - 9/(1·2)c0; n = 1 c3 = - 9c1/(2·3)
n = 2, c4 = - 9c2/(3·4) = (- 9)2/(1·2·3·4)c0; n = 3 c5 = - 9c3/(4·5) = (- 9)2/(1·2·3·4·5)c1
...............................................................
n = 2k, c2k = (- 1)k32kc0/(2k)!
n = 2k + 1, c2k + 1 = (- 1)k32k + 1c1/(2k + 1)!
y = c0∑0∞(- 1)k·32k/(2k)!x2k + c1∑0∞(- 1)k32k + 1/(2k + 1)!x2k + 1