
Arjun P. answered 12/30/20
A in Differential Equations at UT
a. dy/dx = 1/2((x+y-1)/(x+2))2
y' = 1/2((x+y-1)/(x+2))2
let u = (x+y-1)/(x+2)
solving for y: y = u(x+2)-x+1
plug in for y: (u(x+2)-x+1)' = (1/2)u2
u+u'(x+2)-1 = (1/2)u2
u'(x+2) = (1/2)u2-u+1
du/dx 2(x+2) = u2-2u+2
1/(u2-2u+2) du = 1/(2(x+2)) dx
1/((u-1)2+1) du = 1/(2(x+2)) dx
integrate^^^^^^^^^^^^^^^^^^^^
arctan(u-1) = (1/2)ln(x+2) + C
u = tan((1/2)ln(x+2) + C) + 1
substitute for u: (x+y-1)/(x+2) = tan((1/2)ln(x+2) + C) + 1
solve for y: x+y-1 = (x+2)(tan((1/2)ln(x+2) + C) + 1)
x+y-1 = xtan((1/2)ln(x+2) + C) + 2tan((1/2)ln(x+2) + C) + x + 2
y = xtan((1/2)ln(x+2) + C) + 2tan((1/2)ln(x+2) + C) + 3
y = (x+2)(tan((1/2)ln(x+2) + C)) + 3
b. xdy/dx = 6xe2x+y(2x-1)
dy/dx = 6e2x+y(2x-1)/x
dy/dx - y(2x-1)/x = 6e2x
integrating factor: I = eintegral(-(2x-1)/x) = xe-2x
dy/dx(xe-2x) - (xe-2x)y(2x-1)/x = 6e2x(xe-2x)
d/dx (yxe-2x) = 6x
integrate ^^^^^^^
yxe-2x = 3x2 + C
y = 3xe2x + Ce2x/x
c. xy'+y2lnx+y = 0
rewrite in the form of bernoulli's ode: y' + yp(x) = ynq(x)
y'+y/x = -y2lnx/x
the power of y on the right hand side is n in bernoulli's equation
substitute: v = y1-n and solve 1/(1-n)v' + v(px) = q(x)
v = y-1
-v'+v(1/x) = -lnx/x
v'-v(1/x) = lnx/x
integrating factor: I = eintegral(-1/x) = 1/x
v'(1/x)-v(1/x)2 = lnx/x2
d/dx (v/x) = lnx/x2
integrate^^^^^^^^
v/x = -lnx/x-1/x+C1 <---u substitution
v = -lnx-1+C1x
v = -(lnx+1+Cx)
substitute: v=y-1
y-1 = -(lnx+1+Cx)
y = -1/(lnx+1+Cx)