
Yefim S. answered 10/01/20
Math Tutor with Experience
∫F•dr = ∫(xy - 4ye2x)dx + (y2 - 2e2x)dy = ∫∫[∂/∂x(y2 - 2e2x) - ∂/∂y(xy - 4ye2x)]dxdy = ∫∫(- 4e2x - x + 4e2x)dxdy =
C C D D
= ∫∫-xdxdy
D
D: 0 ≤ y ≤ x2, 0 ≤ x ≤ 1.
So ∫∫-xdxdy = ∫01-x∫0x^2dydx = ∫01-xy0x^2dx = ∫01(-x3)dx = -x4/401 = - 1/4. Answer: - 1/4
D