
Yefim S. answered 09/28/20
Math Tutor with Experience
Because ∂/∂y(x - y3 + y2sinx) = - 3y2 + 2ysinx = ∂/∂x(- 3xy2 - 2ycosx).
Then ∂F(x,y)∂/x = (x - y3 + y2sinx); F(x,y) = ∫(x - y3 + y2sinx)dx = x2/2 - y3x - y2cosx + f(y);
∂F(x,y)/∂y = -3y2x - 2ycosx + f'(y) = - 3xy2 - 2ycosx; so f'(y) = 0 and f(y) = C
So solution of equation: x2/2 - y3x - y2cosx = C