
Patrick B. answered 08/20/20
Math and computer tutor/teacher
Wish to prove: J-->( N-->I)
Given: (1) J-->D;
(2) (J and D)-->C;
(3) (N and C)--> I
contrapositive (3):
not I --> not (N and C)
DeMorgan's:
not I --> not N or not C
Implication Identity
I or ( not N or not C)
distributive:
(I or not N) or (I or not C)
associative property:
I or not N or I or not C
absorption property:
I or not N or not C <--- ALPHA
implication identity (2):
not (J and D) or C
DeMorgan's:
(not J or not D) or C
distributive:
(not J or C) or (not D or C)
absorption:
not J or not D or C <-- BETA
implication identity (1):
not J or D <--- DELTA
if J then per DELTA, D must hold per (1) and DELTA
then per BETA, C must hold
then per ALPHA, I or not N must hold.
so if J then D and C and (I or not N)
Simplification of Conjunction says
if J then (I or Not N)
Commutative property says:
if J then (not N or I)
implication identity:
if J then (N --> I)
therefore J-->(N-->I)
end of proof