
Patrick B. answered 08/20/20
Math and computer tutor/teacher
Given:
(I) (Z --> C) --> (V and B)
(II) (V --> Z) --> (V and B)
Prove: V and B
if V, then per (II), Z must hold.
THen per (I), C must hold.
So in this case, V --> Z --> C --> (V and B)
By implication indentity of (2):
not (V --> Z) or (V and B)
Implication property again:
not (not V or Z) or (V and B)
DeMorgans:
(V and not Z) or (V and B) <--- ALPHA
so if Z, then (V and not Z) does NOT hold,
and then per ALPHA, V and B by conjunction