
Yefim S. answered 07/17/20
Math Tutor with Experience
Characterstic equation of homogenius ODE: r2 + 3r + 2 = 0, (r + 2)(r + 1) = 0, r = - 2 or r = - 1.
So, general solution of Homogenius ODE is yh = C1e-2x + C2e-x.
Fundamental set of solutions: y1 = e-2x, y2 = e-x.
We will use variation of parameters formula.
First Wronskian W = det[(e-2x, e-x) (-2e-2x, - e-x)] = - e-3x + 2e-3x = e-3x.
Then particular solution of given ODE: yp = - y1∫y2sin(ex)/Wdx + y2∫y1sin(ex)/Wdx =
= - e-2x∫e-xsin(ex)/e-3xdx + e-x∫e-2xsin(ex)/e-3xdx = - e-2x∫e2xsin(ex)dx + e-x∫exsin(ex)dx =
- - e-2x∫exsin(ex)d(ex) = e-2x cos(ex) - cos(ex) + e-xsin(ex).
So, general solution of given ODE: y = C1e-2x + C2e-x + e-2xcos(ex) - cos(ex) + e-xsin(ex).