Fizaa A.

asked • 07/11/20

Find particular solution of the following non-homogeneous ODE

Select the correct form of a particular solution of the following non-homogeneous ODE:

LaTeX: y^{(4)} \, - \, 8 \, y^{\prime \prime} \, + \, 16 \, y = 7 \, x^2 \, e^{2 \,x} -  \, x \, e^{- 2 \, x}



Here A, B, C, D, E, F, G, H, J represent constants.


a.) LaTeX: (A x^2 \,+ \, B \, x \, + \, C) \, e^{2 x} \, + \, (D \, x + \, E) \, e^{-2 \, x}

b.) LaTeX: (A \, x^4 \, + \, B \, x^3 \, + \, C \, x^2) \, e^{2 \, x} \, + \, (D \, x^3 \, + \, E \, x^2 \, + \, F \, x) \, e^{- 2 \, x}

c.) LaTeX: A \, x^4 \, e^{ 2 \, x} \, + \, B \, x^3 \, e^{- 2 \ x}

d.) LaTeX: (A \, x^4 + \, B \, x^3 \, + C \, x^2 \, + D \, x \, + E) \, e^{2 x} + (F \, x^3 + \, G \, x^2 + \, H \, x \, + \, J ) \, e^{- 2 \, x}


Someone please help!!!!!!

2 Answers By Expert Tutors

By:

Ryan D. answered • 07/13/20

Tutor
4.9 (85)

BS in Physics w/ minor in Applied Math

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.