Patrick B. answered 05/11/20
Math and computer tutor/teacher
integral [ dx/ [ (x-2)((x -2) + sqrt(x-2 ) ] ] =
[ dx / [ (x-2) sqrt(x-2) ( sqrt(x-2) + 1) ]]
let u = sqrt(x-2)
then
du = dx/(2sqrt(x-2))
2 du = 1/sqrt(x-2)
and
u^2 = x-2
integral becomes
2 [ du/ u^2( u+1) ]
partial fraction decomposition
(Au+b)/u^2 + C/u+1 = 1/[ u^2(u+1)]
Multiplies by u^2(u+1)
(Au+b)(u+1) + c U^2 = 1
(A+c)u^2 + (A+B)u + b = 1
A+C=0
A+B=0
B = 1
then a=-1 and C = 1
(-u+1)/u^2 + 1/(u+1)
checks the numerator:
(1-u)(u+1) + u^2 = 1-u^2 + u^2 = 1
yes, partial fraction decomposition is correct
integrates (1-u)/u^2 + 1/(u+1)
= 1/u^2 - 1/u + 1/(u+1)
u^(-2) - u^(-1) + (u+1)^(-1)
(-u^(-1)) - ln u + ln u+1
-1/u - ln u + ln u+1
-1/sqrt(x-2) - 1/2 ln (x-2) + ln ( sqrt(x-2) + 1)
Then multiplies by 2 and re-arranges:
2 [ ln ( sqrt(x-2) + 1) - ln(x-2)/2 - 1/sqrt(x-2) ] + c
is the anti-derivative
Checks by diff:
1/2 cancels the 2 in each derivative
1/[sqrt(x-2)[sqrt(x-2)+1]] - 1/(x-2) + 1/(x-2)^(3/2)
1/ sqrt(x-2)^(3/2) [ sqrt(x-2) + 1] =
1/ sqrt(x-2) [ (x-2) + sqrt(x-2) ]
Taha T.
thanks a lot, is it ok if i end the answer here: ln ( sqrt(x-2) + 1) - ln(x-2)/2 - 1/sqrt(x-2) + c ?05/11/20