Michael K. answered 04/26/19
PhD professional for Math, Physics, and CS Tutoring and Martial Arts
Let's use implicit differentiation to solve for the quantities of interest...
y * cos(x) = ex
∂/∂x(y*cos(x)) = ∂y/∂x * cos(x) + y*(-sin(x))
∂/∂x(ex) = ex
∂y/∂x * cos(x) + y*(-sin(x)) = ex
Now lets take the second derivative...
∂/∂x(∂y/∂x * cos(x) + y*(-sin(x))) = ∂2y/∂x2 * cos(x) + ∂y/∂x * (-sin(x)) + ∂y/∂x*(-sin(x)) - y*cos(x)
∂/∂x(∂/∂x(ex)) = ex
Therefore...
∂2y/∂x2 * cos(x) + ∂y/∂x * (-sin(x)) + ∂y/∂x*(-sin(x)) - y*cos(x) = ex
∂2y/∂x2 * cos(x) - 2∂y/∂x * sin(x) - y*cos(x) = ex
Divide by cos(x) -->
∂2y/∂x2 - 2∂y/∂x * sin(x)/cos(x) - y = ex/cos(x)
∂2y/∂x2 - 2∂y/∂x * tan(x) - y = y (due to definition of original function)
Finally --> ∂2y/∂x2 - 2∂y/∂x * tan(x) - 2y = 0