Two ways to do it.
First, multiply the RHS out then differentiate using the Sum and Power rules:
g(x) = x2(1-8x)
g(x) = x2 - 8x3
g'(x) = d(x2)/dx - d(8x3)/dx
g'(x) = 2x - 24x2
Second way is to apply the Product Rule:
g(x) = x2(1-8x)
g'(x) = (1-8x)·d(x2)/dx - x2·d(1-8x)/dx
g'(x) = (1-8x)·d(x2)/dx - x2·d(1-8x)/dx
g'(x) = (1-8x)·2x - x2·(8)
g'(x) = 2x - 16x2 - 8x2
g'(x) = 2x - 24x2