
Bobosharif S. answered 03/04/18
Tutor
4.4
(32)
Mathematics/Statistics Tutor
∫0xdy/dt=∫0x[1/(t2-16)]dt
y(x)-y(0)=∫0x[1/(t2-16)]dt
y(x)=y(0)+∫0x[1/(t2-16)]dt=(1/8)∫0x[1/(t-4)-1/(t+4)]dt
=(1/8)ln|(t-4)/(t+4)| |0x=(1/8)ln|(x-4)/(x+4)|+ln1
Since y(0)=0 and ln1=0
y(x)=(1/8)ln|(x-4)/(x+4)|
Burak A.
03/04/18