
Chen Jang T. answered 07/28/14
Tutor
4.9
(46)
MaCT (Math and Chemistry Tutor)
∫cos(x)√(1-cos(x) dx= ∫cos(x)√(1-cos2x)/√(1+cos(x) dx = ∫cos(x) sin(x) /√(1+cos(x) dx
let: u= 1+cos(x) then du=-sin(x) dx
Thus, the integral becomes: ∫(u-1)/u1/2 (-du) = -∫ (u1/2 - u-1/2) du = -(2/3)u3/2 + 2u1/2 + C, which after substitution becomes: -(2/3)(1+cos(x))3/2 + 2(1+cos(x))1/2 + C
Since it is a definite integral, plug the limits, the answer should be (-2/3+2)-(-2/3)(2√2)-(2√2) = 4/3 -2√2/3
Tae B.
07/29/14