
Andy C. answered 11/04/17
Tutor
4.9
(27)
Math/Physics Tutor
It is linear :
y' + P(x)y = q(x)
y' + (-1)y = x
P(x) = -1 and q(x) =x
integrating factor : exp(integral (-1)) = exp( -x)
Multiplies everything by integrating factor:
exp(-x)*y' - y*exp(-x) = x*exp(-x)
Dx [ exp(-x)*y ] = x*exp(-x)
------ integrating by parts: ----------
U = x dv = exp(-x)
dU = dx v = -exp(-x)
-x*exp(-x) - integral -exp(-x) dx
-x(exp(-x)) + integral exp(-x) dx
-x(exp(-x)) - exp(-x)
-exp(-x) [ x + 1]
check:
-exp(-x) + (x+1)(exp(-x))
exp(-x) [ -1 + x + 1] <--- yes it is correct
dU = dx v = -exp(-x)
-x*exp(-x) - integral -exp(-x) dx
-x(exp(-x)) + integral exp(-x) dx
-x(exp(-x)) - exp(-x)
-exp(-x) [ x + 1]
check:
-exp(-x) + (x+1)(exp(-x))
exp(-x) [ -1 + x + 1] <--- yes it is correct
--------------------------------------------------
exp(-x)*y = -exp(-x) [ x + 1] + c
y = -1(x+1) + c(exp(x))
check:
y' = -1 +c(exp(x))
y' - y = -1 + c(exp(x)) - [(-1)(x+1) +c(exp(x))] =
-1 + c(exp(x)) + (x+1) - c(exp(x)) =
YES it works, everything cancels expect the x
the solution to this differential equation is :
y = -1(x+1) + c(exp(x))
Rachel L.
11/04/17