
Andy C. answered 09/13/17
Tutor
4.9
(27)
Math/Physics Tutor
x = 10 - t^2
x + t^2 = 10
t^2 = 10 - x
t = sqrt(10-x)
y = t^3 - 12t = t ( t^2 - 12)
= sqrt(10 -x) [ 10 - x - 12]
= [ -2 - x] sqrt(10-x)
= -(x+2)sqrt(10-x)
= -(x+2)(10 -x)^1/2
y' = -1/2(x+2)(10-x)^(-1/2) (-1) + (-1) (10-x)^(1/2)
= 1/2(x+2)(10-x)^(-1/2) - (10-x)^(1/2)
= (10-x)^(-1/2) [ 1/2(x+2) - (10-x) ]
= (10-x)^(-1/2) [ 1/2x + 1 - 10 + x]
= (10-x)^(-1/2) [ 3/2x - 9]
= [(3/2)X - 9 ]/ sqrt(10 -x)
Horizontal tangent when (3/2)X - 9 = 0
3/2X = 9
X = 6
Vertical tangent when sqrt(10-x) = 0
10 -x = 0
x = 10
x + t^2 = 10
t^2 = 10 - x
t = sqrt(10-x)
y = t^3 - 12t = t ( t^2 - 12)
= sqrt(10 -x) [ 10 - x - 12]
= [ -2 - x] sqrt(10-x)
= -(x+2)sqrt(10-x)
= -(x+2)(10 -x)^1/2
y' = -1/2(x+2)(10-x)^(-1/2) (-1) + (-1) (10-x)^(1/2)
= 1/2(x+2)(10-x)^(-1/2) - (10-x)^(1/2)
= (10-x)^(-1/2) [ 1/2(x+2) - (10-x) ]
= (10-x)^(-1/2) [ 1/2x + 1 - 10 + x]
= (10-x)^(-1/2) [ 3/2x - 9]
= [(3/2)X - 9 ]/ sqrt(10 -x)
Horizontal tangent when (3/2)X - 9 = 0
3/2X = 9
X = 6
Vertical tangent when sqrt(10-x) = 0
10 -x = 0
x = 10