Eric C. answered 11/16/15
Tutor
5.0
(180)
Engineer, Surfer Dude, Football Player, USC Alum, Math Aficionado
Since the numerator is of a higher power than the denominator, it's easiest to first do long division.
(x-3)(x+4) = x^2 + x + 12
x^2 - x + 13
_____________________________
(x^2 + x - 12) / (x^4 + 0*x^3 + 0x^2 + 0*x + 0)
-(x^4 + 1*x^3 - 12*x^2 + 0*x + 0)
- 1*x^3 + 12*x^2 + 0*x + 0)
-(- 1*x^3 - 1*x^2 + 12*x + 0)
13*x^2 - 12*x + 0
-(13*x^2 +13*x - 156)
-25x +156
So the integral becomes:
∫x^2 - x + 13 + (-25x+156)/(x^2 + x - 12) dx
Break it up into two integrals.
∫x^2 - x + 13 dx + ∫(-25x+156)/(x^2 + x -12) dx
The first integral is easy, so I'll focus on the second on for now.
First change the denominator back to its original form.
∫(-25x+156)/((x+4)(x-3)) dx
Then do a partial fraction decomposition.
(-25x+156)/((x+4)(x-3)) = A/(x+4) + B/(x-3)
(-25x+156)/((x+4)(x-3)) = (A(x-3) + B(x+4))/((x+4)(x-3))
Cancel the denominators.
-25x + 156 = Ax - 3A + Bx + 4B
x(A+B) = -25x
-3A + 4B = 156
So
A + B = -25
-3A + 4B = 156
A = -B - 25
-3(-B - 25) + 4B = 156
3B + 75 + 4B = 156
7B = 81
B = 81/7
A + 81/7 = -175/7
A = -256/7
So we finally yield:
∫(x^2 - x + 13) dx + ∫(-256/7)/(x+4) dx + ∫(81/7)/(x-3) dx
Final answer:
1/3*x^3 - 1/2*x^2 + 13x + (-256/7)*ln(x+4) + (81/7)*ln(x-3) + C
Don't forget the +C!!!