Mark M. answered 09/06/15
Tutor
4.9
(952)
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
x[lnx - ln(x-3)] = ln[x/(x-3]/ (1/x)
= ln[1/(1-3/x)]/(1/x)
= [ln1 - ln(1-3/x)]/(1/x)
= -ln(1-3/x)/(1/x)
As x → ∞, this expression → 0/0, so we can use L'Hopital's Rule.
Applying L'Hopital's Rule, lim [-ln(1-3/x)/(1/x)] (as x → ∞)
= lim [( (-3/x2)/(1-3/x) )/(-1/x2)] (as x → ∞)
= lim[3/(1-3/x)] (as x→∞) = 3/(1-0) = 3