Rationalize the numerator by multiplying the numerator and denominator by the conjugate of the numerator:
(√(25+h) - 5)/h = [(√(25+h) - 5)/h][(√(25+h) + 5)/(√(25+h) + 5)]
= (25 + h - 25)/[h(√(25+h)+5)]
= h/[h(√(25+h)+5)]
= 1/[√(25+h)+5]
Taking the limit as h→0, we get 1/[√25 + 5] = 1/10