To find the arc length, we have to integrate √[1 + (f'(x))2] from 1 to 3.
1 + (f'(x))2 = 1 + (¼x2 - x-2)2 = 1 + (1/16)x4 - 1/2 + x-4
= (1/16)x4 + 1/2 + 1/x4
= [x8 + 8x4 + 16]/(16x4)
= (x4+ 4)2/(16x4)
So, √ [1 + (f'(x))2] = (x4 + 4)/(4x2) = (1/4)x2 + x-2
Integrate and evaluate from 1 to 3:
[(1/12)(3)3 - 1/3] - [1/12 -1] = 9/4 - 1/3 - 1/12 + 1
= 27/12 - 4/12 - 1/12 + 12/12
= 34/12 = 17/6