Bobosharif S. answered 01/27/18
Tutor
4.4
(32)
Mathematics/Statistics Tutor
Definition of derivative at the point x0:
f'(x0)=limh→0[f(x0+h)-f(x0)]/h
In your question x0=4, so
f'(0)=limh→0[5(4+h)3-5*43]/h
=5limh→0[(4+h)3-43]/h =|here we use a3-b3=(a-b)(a2+ab+b2)
=5limh→0[(4+h-4)(16+4(4+h)+42)]/h=
=5limh→0[h(16+16+4h+16)]/h=
=5limh→0[48+4h)]=5*48=240.
Thus, f'(4)=160.