Sn = sum of first n terms = a1(1-rn)/(1-r) = 5
S2n =sum of first 2n terms = a1(1-r2n)/(1-r) = 650 = 5(130)
So, 130a1(1-rn)/(1-r) = a1(1-r2n)/(1-r)
130(1-rn) = 1-r2n
r2n - 130rn + 129 = 0
Let u = rn Then, u2 - 130u + 129 = 0
(u-129)(u-1) = 0 So, u = 129 or u = 1
That is, rn = 129 or rn = 1.
If rn =1, then the formula for Sn gives Sn = 0, not 5.
Therefore, rn = 129
Since Sn = a1(1-rn) / (1-r) = 5, we get -128a1 = 5 - 5r
So, a1 = (5r-5)/128
Thus, S3n = a1(1-r3n)/(1-r)
= [5(r-1)/128] (1 - (rn)3] / (1-r)
= (-5/128)[1 - (129)3]
= 83855
Aiden G.
10/08/17