
Kris V. answered 10/15/17
Tutor
5
(36)
Experienced Mathematics, Physics, and Chemistry Tutor
To identify continuity (or discontinuity ) of a function f(x) at a point a, you need to find
limx→a− f(x), the limit from the left of a
limx→a+ f(x), the limit from the right of a
f(a), the value of the function at a.
Continuity
limx→a− f(x) = limx→a+ f(x) ⇒ limx→a f(x) exists
limx→a f(x) = f(a)
Removable Discontinuity
limx→a− f(x) = limx→a+ f(x) ⇒ limx→a f(x) exists
limx→a f(x) ≠ f(a)
limx→a f(x) ≠ f(a)
Jump Discontinuity
limx→a− f(x) ≠ limx→a+ f(x) ⇒ limx→a f(x) does not exist
For this problem
limx→0− g(x) = limx→0− 1/(e1/x − 1) = 1/[e1/0− − 1] = 1/(e−∞ − 1) = − 1
limx→0+ g(x) = limx→0+ 1/(e1/x − 1) = 1/[e1/0+ − 1] = 1/(e+∞ − 1) = 0
Since limx→0− g(x) ≠ limx→0+ g(x), g(x) has a jump discontinuity at 0.