1) x=3-2t ---> t= (3-x)/2
Replace t in the second equation y= 2+3((3-x)/2) = 2+ 9/2-3x/2 = -3x/2 + 13/2 = -1/2(3x-13)
y=-1/2(3x-13), where x is any real number
2) Replace t=1-y from the second equation, into the first eq.
x= sqrt(1-y), where 1-y >=0, Y<=1 and x>=0
x^2 = 1-y ---> y= 1- x^2, where x>=0
3) cos(theta) =(x-4)/2 ---> theta = arccos((x-4)/2), where 0 <= (x-4)/2 <= pi ---> 4<= x <=2pi+4
y= 1+2sin(arccos((x-4)/2), where 4<= x <=2pi+4
4) theta= arcsec(x),
Y=cos(arcsec(x)) where x<=-1 or x>=1
5) x=e^(2t) ---> ln x= ln e^(2t) = 2t ln(e) ---> t= (ln x)/2, where x>0
y=e^((ln x)/2) =e^ln (sqrt(x)) = sqrt (x), x>o
or easier way
x= e^(2t) = (e^t)^2 = y^2 , where x>0
or y= sqrt(x), where x>0