
Patrick D. answered 05/01/17
Tutor
5
(10)
Patrick the Math Doctor
0 = fx = 8x^3 - 12y
0 = fy = 2y - 12x --> 12x = 2y --> y = 6x
plugging this into the first equation
0 = 8x^3 - 12(6x) = 8x^3 - 72x
0 = 8x( x^2 - 9)
0 = 8x(x+3)(x-3)
x=0 , x = 3, x=-3
(0,0) (3,18) (-3,-18) <-- critical points
Now we need the second partial derivatives:
fxx = 24x^2
fyy = 2
fxy = -12
D (a,b) = fxx(a,b)*fyy(a,b) - fxy(a,b)^2
1st critical point (0,0): fxx(0,0) *fyy(0,0) - fxy(0,0)^2 = 0*0 - (-12)^2 = 0 - 144 < 0.
So (0,0) is a saddle point
2nd critical point (3,18): fxx(3,18)*fyy(3,18) - fxy(3,18)^2 = 24*3^2 * 2 - (-12)^2 =
24*9*2 - 144 =
432-144 = 288
So (3,18) is a relative minimum because D>0 and fxx>0
3rd critical point (-3,-18): fxx(-3,-18)*fyy(-3,-18) - fxy(-3,-18)^2 = 24*(-3)^2 * 2 - (-12)^2 =
24*9*2 - 144 =
432 - 144 = 288
So (-3,-18) is also a relative minimum because D>0 and fxx > 0
SOURCE:
Paul's online math notes
http://tutorial.math.lamar.edu/Classes/CalcIII/RelativeExtrema.aspx