Roman C. answered 04/26/13
We must first parameterize the curve.
First of all, solving the second equation for z gives z = 5 - x.
Given the first equation, x2+y2 = 16, we can take x = 4 cos t, y = 4 sin t so that z = 5 - 4 cos t.
Thus r = <4 cos t, 4 sin t, 5 - 4 cos t>
We now need v = dr/dt, a = dv/dt, and v×a.
v = <-4 sin t, 4 cos t, 4 sin t>
a = <-4 cos t, -4 sin t, 4 cos t>
v×a = <(4 cos t)(4 cos t) - (4 sin t)(-4 sin t) ,
(4 sin t)(-4 cos t) - (-4 cos t)(4 sin t) ,
(-4 sin t)(-4 sin t) - (4 cos t)(-4 cos t)>
= <16, 0, 16>
Now ||v|| = √[(-4 sin t)2 + (4 cos t)2 + (4 sin t)2] = √(16 + 16 sin2 t) = 4√(1+sin2 t)
and ||v×a|| = 16√2
So the curvature will be
κ = ||v×a|| / ||v||3 = √2 / [4(1+sin2 t)3/2]
r = <4,0,1> occurs when cos t = 1 so that we can take t = 0.
We get κ = √2 / [4(1+sin2 0)3/2] = √2 / 4.