Parameterize the path from (x,y,z) = (0,0,0) to (x,y,z) = (1,2,3)
as [x=t, y=2t, z=3t] for (0 ≤ t ≤ 1).
From F(x,y,z) = y sin (x2)i + (xyz)j + (x+y+z)k, translate
to F(t,2t,3t) = 2t sin (t2)i + (t•2t•3t)j + (t+2t+3t)k or
2t sin (t2)i + (6t3)j + (6t)k.
From ∫[from A=(0,0,0) to B=(1,2,3)] F•ds equals
∫[from t=0 to t=1][Fxdt/dt + Fyd(2t)/dt + Fzd(3t)/dt]dt,
write ∫[from t=0 to t=1][2t sin (t2)•1 + (6t3)•2 + (6t)•3]dt.
Simplify to ∫[from t=0 to t=1][2t sin(t2) + 12t3 + 18t]dt.
Integration gives [-cos (t2) + 3t4 + 9t2|[from t=0 to t=1]]
or 12 − cos (1 Radian) − 0 + cos (0 Radian) or
13 − cos (1 Radian) equal to 12.45969769.