
Russ P. answered 11/24/14
Tutor
4.9
(135)
Patient MIT Grad For Math and Science Tutoring
Jenny,
#14. y=ln(6x+7)(1/5) . Then dy/dx = (1/5)(6x + 7)(-4/5)(6) / (6x+7)(1/5) = 6 /[5 (6x+7)(5/5)] = 6/[5(6x+7)].
#26. y=6ln(x4-2) . Then dy/dx = 6 (4x3)/(x4 - 2) = 24x3 / (x4 - 2).
#30. 7e[4√(x+8)] . Then dy/dx = 7[2(x+8)(-1/2)] e[4√(x+8)] = 14 e[4√(x+8)] / (x+8)(1/2).
#32.f(x)= 8+9x ln x. Then df(x)/dx = 0 + 9 ln x + 9x(1/x) = 9 [ 1 + ln x].
#34.y=ln √(x2-5) . Then dy/dx = {1/[(x2 - 5)(1/2)]} [(1/2)2x] = x/[(x2 - 5)(1/2)].
#26. y=6ln(x4-2) . Then dy/dx = 6 (4x3)/(x4 - 2) = 24x3 / (x4 - 2).
#30. 7e[4√(x+8)] . Then dy/dx = 7[2(x+8)(-1/2)] e[4√(x+8)] = 14 e[4√(x+8)] / (x+8)(1/2).
#32.f(x)= 8+9x ln x. Then df(x)/dx = 0 + 9 ln x + 9x(1/x) = 9 [ 1 + ln x].
#34.y=ln √(x2-5) . Then dy/dx = {1/[(x2 - 5)(1/2)]} [(1/2)2x] = x/[(x2 - 5)(1/2)].