
Bobosharif S. answered 02/15/18
Tutor
4.4
(32)
Mathematics/Statistics Tutor
exyz=2,
xyz=ln2,
i) z=ln2/(xy)
zx=-(ln2/x2y)
zy=-(ln2/xy2)
iii) d(exyz)=0
d(exyz)xdx+d(exyz)ydy+d(exyz)zdz=0
(yz+xyz'x)dx+(xz+xyzz'y)dy=0
yz+xyz'x=0, yz+xyz'y=0
z'x=-z/x
z'x=(-ln2/(xy))/x=-ln2/(x2y). Similar to this z'y=-ln2/(xy2).
ii) exyz=2
(exyz)'x=0
(yz+xyz'x)exyz=0 (y≠0, divide by y)
xz'x=z
z'x=-z/x=-ln2/x2y
Similar
z'y=-z/y=-ln2/xy2
a) F(x, y, z(x,y))=exyz-2
DF=Fxdx+Fydy+Fz((∂z/∂x)dx+(∂z/∂y)dy)=0
[Fx+Fz(∂z/∂x)dx]+[Fy+Fz(∂z/∂y)dy]=0
Fx+Fz(∂z/∂x)=0 ⇒ ∂z/∂x=-Fx/Fz
Fy+Fz(∂z/∂y)=0 ⇒ ∂z/∂x=-Fy/Fz
You can check these partial derivarives by taking derivtaive of
F(x,y,z(x,y))=exyz-2.
Parts b) and c) are already done above.

Imtiazur S.
03/26/18