solving for the y-intercept?
solving for the y-intercept?
From what I'm understanding, you have a quadratic function --- ƒ(x) = (1/2)x^{2} or y = (1/2)x^{2} --- and you are looking to find the y-intercept of this function, which is the point at which the function crosses the y-axis (or, in other words, it is the point at which x=0).
To find the y-intercept, we simply plug in 0 for x in the equation of the function and solve for y. This value for y is the y-intercept. That is,
ƒ(x) = (1/2)x^{2} , x = 0
ƒ(0) = (1/2)(0)^{2}
= (1/2)(0)
= 0
Thus, since ƒ(0)=0, the y-intercept is at the point (0, 0).
Thank You!!!
This was very helpful. I can now explain to the student.
To solve for the y-intercept of an equation, we need to set the x-value equal to 0 and solve for the y value. The resultant y-value is the value where the function crosses the y-axis. By setting x=0, we get y=(1/2)*(0)^2 = 0. The y-intercept of y=(1/2)x^2 is 0.
Was this your question?
Comments
I am not sure what you question is. Could your write out the whole problem?