
Steve S. answered 02/21/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
f(x) = (x+3)^5 + (x+3)^2
= (x+3)^2 ((x+3)^3 + 1)
= (x+3)^2 ((x+3) + 1)((x+3)^2 - (x+3) + 1) =
= (x+3)^2 (x+4) (x^2 + 6x + 9 - x - 2)
= (x+3)^2 (x+4) (x^2 + 5x + 7)
If x^2 + 5x + 7 = 0, then
x = (-b ± √(b^2 - 4ac))/(2a)
x = (-5 ± √(5^2 - 4(1)(7)))/(2*1)
x = (-5 ± √(25 - 28))/2
x = (-5 ± √(-3))/2
x = (-5 ± i√(3))/2 = -5/2 ± i(√(3))/2
x^2 + 5x + 7 = (x - (-5/2 + i(√(3))/2))(x - (-5/2 - i(√(3))/2))
x^2 + 5x + 7 = (x + 5/2 - i(√(3))/2))(x + 5/2 + i(√(3))/2))
f(x) = (x + 3)^2 (x + 4) (x + 5/2 - i(√(3))/2)) (x + 5/2 + i(√(3))/2))
= (x+3)^2 ((x+3)^3 + 1)
= (x+3)^2 ((x+3) + 1)((x+3)^2 - (x+3) + 1) =
= (x+3)^2 (x+4) (x^2 + 6x + 9 - x - 2)
= (x+3)^2 (x+4) (x^2 + 5x + 7)
If x^2 + 5x + 7 = 0, then
x = (-b ± √(b^2 - 4ac))/(2a)
x = (-5 ± √(5^2 - 4(1)(7)))/(2*1)
x = (-5 ± √(25 - 28))/2
x = (-5 ± √(-3))/2
x = (-5 ± i√(3))/2 = -5/2 ± i(√(3))/2
x^2 + 5x + 7 = (x - (-5/2 + i(√(3))/2))(x - (-5/2 - i(√(3))/2))
x^2 + 5x + 7 = (x + 5/2 - i(√(3))/2))(x + 5/2 + i(√(3))/2))
f(x) = (x + 3)^2 (x + 4) (x + 5/2 - i(√(3))/2)) (x + 5/2 + i(√(3))/2))