Roman C. answered 01/23/17
Tutor
5.0
(851)
Masters of Education Graduate with Mathematics Expertise
a. (dL)2 = [d(cos 4t)]2 + [d(sin 4t)]2 +[d(4t)]2 = [(-4 sin 4t)2 + (4 cos 4t)2 + 42] (dt)2 = 32(dt)2
L = ∫0π/2 4√2 dt = 2π√2
b. (dL)2 = [d(cos t/2)]2 + [d(sin t/2)]2 +[d(t/2)]2 = [(-(1/2) sin t/2)2 + ((1/2) cos t/2)2 + (1/2)2] (dt)2 = (1/2)(dt)2
L = ∫04π (√2 / 2) dt = 2π√2
c. (dL)2 = [d(cos t)]2 + [d(sin t)]2 +(dt)2 = [(-sin t)2 + (cos t)2 + 12] (dt)2 = 2(dt)2
L = ∫-2π0 √2 dt = 2π√2
L = ∫0π/2 4√2 dt = 2π√2
b. (dL)2 = [d(cos t/2)]2 + [d(sin t/2)]2 +[d(t/2)]2 = [(-(1/2) sin t/2)2 + ((1/2) cos t/2)2 + (1/2)2] (dt)2 = (1/2)(dt)2
L = ∫04π (√2 / 2) dt = 2π√2
c. (dL)2 = [d(cos t)]2 + [d(sin t)]2 +(dt)2 = [(-sin t)2 + (cos t)2 + 12] (dt)2 = 2(dt)2
L = ∫-2π0 √2 dt = 2π√2