
Kendra F. answered 11/22/16
Tutor
4.7
(23)
Patient & Knowledgeable Math & Science Tutor
The second derivative of f'(x)
factor out constant
-2* d/dx (x/(x2-1)2
Use the quotient rule:
d/dx [ h(x)/g(x) ] = [h'(x)*g(x) - g'(x)*h(x) ] / g(x)2
Note that the derivative of the function in the denominator, g'(x) is chain ruled
g(x) = (x2-1)2
g'(x) = 2(x2-1)*(2x) = 4x(x2-1)
Then we have;
f''(x) = -2 * [ (x2-1)2 - 4x(x2-1)(x) ] / (x2-1)4
factor out an (x2-1) and combine like terms
f''(x) = -2 * (x2 - 1 - 4x2) / (x2-1)3
f''(x) = -2 * (-3x2 - 1) / (x2-1)3
f''(x) = (6x2+2)/(x2-1)3