Differentiating this function involves use of the chain rule.
Recall that if u is a function of x, then (d/dx)(cosu) = -sinu(du/dx)
(d/dx)(sinu) = cosu(du/dx)
So, if y = sin[cos(sinx)],
then dy/dx = cos[cos(sinx)] (d/dx)[cos(sinx)]
= cos[cos(sinx)][-sin(sinx)(d/dx)(sinx)]
= cos[cos(sinx)](-sin(sinx))(cosx)
= -cosx(sin(sinx))cos[cos(sinx)]