It's a geometric series since an = (-1/10)n-1.
Recall that if |x| < 1, then 1 + x + x2 + x3 + ... = 1 / (1 - x).
In this case we have x = -1/10 so the sum is
1 + (-1/10) + (-1/10)2 + (-1/10)3 + ... = 1 / (1 - (-1/10)) = 1 / (1 + 1/10)
= 1 / (11/10) = 10/11.
The absolute error in using the nth partial sum (a1 + a2 + ... + an) is:
En = |an+1 + an+2 + an+3 ...| = |(-1/10)n + (-1/10)n+1 + (-1/10)n+2 ...|
= |(-1/10)n * [1 + (-1/10) + (-1/10)2 + ...]|= |(-1/10)n(10/11)|
= 1 / (11*10n-1).
Notice that 10-n-1 < En < 10-n.
Thus E7 > 10e-8 but E8 < 10e-8 and so you need to add up the first eight terms.