
Tim E. answered 10/29/15
Tutor
5.0
(45)
Comm. College & High School Math, Physics - retired Aerospace Engr
f(x) = (sinx-xcosx)/cosx+xsinx
*** (assuming your brackets are correct, and the "/cosx + xsinx" is not bracketed, meaning xsinx is by itself)
we can rewrite the divisor, cosx cosx^-1 in the numerator
f = (sinx - xcosx)*(cosx^-1) + xsinx
apply product rule h'(x)=[f(x)g(x)]'= f'(x)g(x)+f(x)g'(x) where f'(x) = df(x)/dx
we can rewrite the divisor, cosx cosx^-1 in the numerator
f = (sinx - xcosx)*(cosx^-1) + xsinx
apply product rule h'(x)=[f(x)g(x)]'= f'(x)g(x)+f(x)g'(x) where f'(x) = df(x)/dx
---------------------
[remember: d/dx (sinx) = cosx and d/dx (cosx) = -sinx ]
d/dx [ (sinx - xcosx)*(cosx^-1) ] + d/dx [xsinx]
d/dx(sinx - xcosx)*(cosx^-1) + (sinx - xcosx)*d/dx(cosx^-1) + d/dx(x)*sinx + x*d/dx(sinx)
.............#1........................ ................ #2 .................... .................. #3.................
#1
[ cosx - (d/dx(x)*cosx) + x*d/dx(cosx)) ] * cos^-1 (applied prod rule on xcosx)
[ cosx - [1*cosx + x*(-sinx) ] * cosx^-1
[cosx - cosx + xsinx ] * cosx^-1
= xsinx / cosx = xtanx
#2 (sinx - xcosx)*(-1)(cosx^-2)(-sinx) = (sinx - xcosx)*sinx*cosx^-2
(sinx^2 - xcosx*sinx) * (cosx^-2)
(sinx^2/cosx^2) - (xcosx*sinx)/cosx^2
= tanx^2 - x*sinx/cosx = tanx^2 - xtanx
#3 (1)*sinx + x*cosx
= sinx + xcosx
now combine #1,2,3
-------------------------
xtanx + (tanx^2 - xtanx) + (sinx + xcosx) .................. (xtanx terms cancel)
= tanx^2 + sinx + xcosx
Patricia S.
10/29/15