1) Show the identity
r(t) = < e^(5t)cos(12t), e^(5t)sin(12t), e^(5t) >
(5cos(12t) − 12sin(12t))^2 + (5sin(12t) + 12cos(12t))^2
= 25cos^2(12t) − 120sin(12t)cos(12t) + 144sin^2(12t)
+ 25sin^2(12t) + 120sin(12t)cos(12t) + 144cos^2(12t)
Cross terms cancel
= (25 + 144)(cos^2(12t) + sin^2(12t))
= 169(1)= 169
2) Equation and name of the surface
x = e^(5t)cos(12t)
y = e^(5t)sin(12t)
z = e^(5t)
x^2 + y^2 = e^(10t)(cos^2(12t) + sin^2(12t))
x^2 + y^2 = e^(10t)
Since z = e^(5t), then z^2 = e^(10t)
x^2 + y^2 = z^2
The curve lies on a right circular cone
3) Velocity and speed
v(t) = r'(t)
v(t) = < e^(5t)(5cos(12t) − 12sin(12t)),
e^(5t)(5sin(12t) + 12cos(12t)),
5e^(5t) >
|v(t)| = sqrt[(e^(5t))^2((5cos(12t) − 12sin(12t))^2
+ (5sin(12t) + 12cos(12t))^2 + 25)]
|v(t)| = e^(5t)sqrt(169 + 25)
|v(t)| = e^(5t)sqrt(194)
4) Unit tangent vector T(t)
T(t) = v(t) / |v(t)|
T(t) = (1 / sqrt(194)) <
5cos(12t) − 12sin(12t),
5sin(12t) + 12cos(12t),
5 >
5) Unit normal vector N(t)
T'(t) = (12 / sqrt(194)) <
−5sin(12t) − 12cos(12t),
5cos(12t) − 12sin(12t),
0 >
|T'(t)| = 156 / sqrt(194)
N(t) = T'(t) / |T'(t)|
N(t) = (1 / 13) <
−5sin(12t) − 12cos(12t),
5cos(12t) − 12sin(12t),
0 >