
Binhan N. answered 11/26/16
Tutor
New to Wyzant
I am a responsible teacher; I am persistent and careful
Dear Mr/Ms; this is my solution:
D = Matrix of 2 1 -4 you get this from the equation at the beginning system (2x + y -4z = -4;.....)
4 -3 8
-2 7 -12
Thus, we have: matrix
D = 2* ( -3 8) - 1* (4 8) + -4* ( 4 -3)
( 7 -12) (-2 -12) -2 7
D = 2*( (-12*-3) - 7*8) - 1* (-12*4 - -2*8) -4*(7*4 - -2*-3)
D = -96
Accordingly, we have Dx= ( -4 1 -4 this comes out when you apply the result of beginning to replace x position
-8 -3 8
24 7 -12)
Dx = -4* (-3 8) - 1* (-8 8) -4* (-8 -3
7 -12) 24 -12 24 7)
Dx = -4*(-12*-3 -7*8) - 1*(-8*-12-24*8) -4*(-8 *7-24*-3)
Dx = 112
then, we establish matrix for Dy: (2 -4 -4
4 -8 8
-2 24 -12)
Dy= 2* (-8 8 ) - -4*( 4 8) -4* (4 -8)
24 -12) -2 -12) -2 24)
Dy = 2* (-12 *-8 - 24*8) - - 4*(-12*4 - -2*8) - 4*(24*4 - (-2)*(-8))
Dy = -640
Accordingly, a matrix for Dz = (2 1 -4
4 -3 -8
-2 7 24)
Dz = 2* ( -3 -8 - 1*( 4 -8 + -4*(4 -3
7 24) -2 24) -2 7)
Dz = 2*(-3*24 - 7*(-8)) - 1*(24*4)-(-8)*(-2)) -4*(7*4)-(-3)*(-2))
Dz = -200
Thus, x = Dx/D = 112/-96
y = Dy/D = -640/-96
z = Dz/D= -200/-96
Thanks for reading and you could reach me if you have more question. Thank you