v=v0cosθ*i + v0sinθ*j
X=v0cosθ*t = 400 ft and Y=v0sinθ*t - gt2/2;
when Y=0; so v0sinθ*t = gt2/2; then X=400=v0cosθ*t, so t=X/v0cosθ,
from v0sinθ = gt/2; v0sinθ = g/2 *X/v0cosθ; v20 2sinθ cosθ = X/g; v20 = Xg sin2θ;
v0 min is for sin2θ = max = 1; so v0 min = [Xg]1/2 V0 min = [400*32.17]1/2 = 113.44 ft/sec
t=X/v0cosθ = 400/113.44*cos(45) = 4.99 sec.
Ymax is when Vy=V0sinθ - gt =0; so t=V0sinθ/g;
Ymax = V0sinθ*t - gt2/2 = V0sinθ [V0sinθ/g] - g/2 [V0sinθ/g]2 = [V0sinθ]2/2g
Ymax= [113.44 *sin(45)]2/2*32.17 = 100 ft.