
Bobosharif S. answered 02/15/18
Tutor
4.4
(32)
Mathematics/Statistics Tutor
If f(x)=1/(x-2)-1/(x-3), when x>3
f(x)=cx+1, x≤3
limx→3+f(x)=limx→3+(1/(x-2)-1/(x-3))=∞
limx→3-f(x)=limx→3-(cx+1)=1+c
THEN there is no such finite c!
BUT if f(x)=1/(x-2)-1/x-3, for x>3, then
limx→3+f(x)=limx→3+(1/(x-2)-1/x-3)=-7/3
and in order f(x) to be continous at x=3 c should be
c+1=-7/3, c=-10/3.