f(x) = sinhx = (ex - e-x)/2 f(0) = (e0 - e-0)/2 = 0
f'(x) = (ex + e-x)/2 f'(0) = 1
f"(x) = (ex - e-x)/2 f"(0) = 0
f'''(x) = (ex + e-x)/2 f'''(0) = 1
MacLaurin Series for f(x): f(0) + f'(0)(x-0) + f"(0)/2! (x-0)2 + f'''(0)/3! (x-0)3 + ...
Substituting into the formula, sinhx = 0 + x + 0 + x3/3! + 0 + x5/5! + ...
= x + x3/3! + x5/5! + x7/7! + ...
Using the first 2 nonzero terms, sinh(1/2) ≈ (1/2) + (1/2)3/3!
= 1/2 + 1/48 = 0.520833333
Note: Using a calculator, sinh(1/2) = (e½ - e-1/2)/2 ≈ 0.521095