∫[√(4 - x2) / x2]dx Let x = 2sinθ. Then dx = 2cosθdθ
So, the given integral is equivalent to ∫[√(4 - 4sin2θ) / (4sin2θ)]2cosθdθ = ∫cot2θdθ =
∫[[csc2θ - 1]dθ = -cotθ - θ + C
Since x = 2sinθ, sinθ = x/2 (so θ = Sin-1(x/2)) and using right triangle trigonometry, cotθ = √(4 - x2) / x
So, the answer is : - √(4 - x2) / x - Sin-1(x/2) + C
 
     
             
 
                     
                    