Denominator D = x(x^2+4)
(x-8) A Bx + C
------------ = -------- + ---------------
x(x^2+4) x x^2 + 4
x-8 = A(x^2 + 4) + x(Bx+C)
x-8 = Ax^2 + 4A + Bx^2 + Cx
= (A+B)x^2 + Cx + 4A
A+B=0
C = 1
4A = -8 ----> A = -2 ----> B=2
-2/x + (2x+1)/(x^2+4) =
-2(x^2 + 4) + x(2x+1)/ D
(-2x^2 + -8 + 2x^2 + x)/D
= (x-8)/D , so yes it checks
----------------------------------------------------
For problem B you must divide the polynomials first,
because the numerator has higher degree than the denominator.
__ x____ -4 ______________________
x^2 + 2x | x^3 + 0x^2 + 2x - 1
x^3 + 4x^2
-------------------------------
- 4x^2 + 2x - 1
-4x^2 - 8x
----------------------------
10x - 1
So the fraction that needs decomposed is:
10x-1 A B
--------- = ------ + ------
x(x+2) x x+2
10x-1 = A(x+2) + Bx
10x - 1 = Ax + 2A + Bx
10x - 1 = (A+B)x + 2A
A+B = 10
2A = -1 ----> A = -1/2
B = 10.5
-0.5/x + 10.5/(x+2) =
which has numerator
[-0.5(x+2) + 10.5x ]=
=0.5X - 1 + 10.5x =
10x - 1, so it checks