Bobosharif S. answered 06/03/18
Tutor
4.4
(32)
PhD in Math, MS's in Calulus
I=∫-5r5r√(3r2-y2)(25r2-y2)dy=r2∫-55√(3-t2)(25-t2)dt.
This integral cannot be evaluated directly. It can be reduced (or expressed) to Elliptic Integrals.
Substitution y=5rsint; dy=5r cost dt,
I=25r3∫√(3-25sin2t) cos2tdt=I=25r3∫√(3-25sin2t) (1-sin2tdt)=
=25r3∫√(3-25sin2t) dt +r3∫√(3-25sin2t)(-25sin2t) dt=
=25r3∫√(3-25sin2t) dt +r3∫√(3-25sin2t)(3-25sin2t-3)dt=
=22r3∫√(3-25sin2t) dt +r3∫√(3-25sin2t)3dt.