
Andy C. answered 04/09/18
Tutor
4.9
(27)
Math/Physics Tutor
P(t) = N*(1.05)^(t-2000) where N is the starting population and t is the Year
Note that 5% growth means the population increases 100%+5% = 105% = 1.05
and year 2000 be the starting year, which is why 2000 is subtracted in the expoenent
P(2000) = 400000
N*(1.05)^(2000-2000) = 400000
N*(1.05)^0 = 400000
N*1 = 400000
N = 400000
The population function is
P(t) = 400000*(1.05)^(t-2000)
P(2018) = 400000*(1.05)^(18) = 962647.69347.....
1000000 = 400000(1.05)^(T-2000)
1000000/400000 = (1.05)^(t-2000)
2.5 = 1.05^(t-2000)
LOG 2.5 = LOG 1.05 ^ (t-2000)
log 2.5 = (t-2000) LOG 1.05
log 2.5 / log 1.05 = t - 2000
T = Log 2.5 / Log 1.05 + 2000
= 2018.78023456328.....
12 months per year * 0.78023456... = 9.37
So in September this year the population will hit 1 million