DeMoivre's Theorem states that for a complex number in polar form, z = r(cosθ+isinθ), zn = rn(cosnθ+isinnθ).
So for the complex number z = (1-i)2, you must:
1) First convert it from standard form, z=a+bi, to polar form, z = r(cosθ+isinθ)
r2 = a2+b2
θ = tan-1(b/a)
2) Apply DeMoivre's Theorem (above) to find z2 in polar form.
3) Convert z2 from polar form back to standard form (a+bi):
a = rn*cos(nθ)
b = rn*sin(nθ)