Algebra 1
Algebra 1
Math Courses Completed in College:
Calculus III & II: Studied functions of several variables, vectors, partial derivatives and multiple integrals, techniques of integration, improper integrals, differential equations, infinite series, conic sections, curves in parametric form and polar coordinates.
Calculus I: Studied algebraic and transcendental functions, continuity and limits, derivatives and anti-derivatives of algebraic, trigonometric, exponential and logarithmic functions. Relative and absolute maxima and minima, points of reflection, evaluated integral by use of the fundamental theorem of calculus.
College Algebra: Studied real numbers, graphs, theory of functions, sinusoidal equations, and their applications to science.
Linear Algebra: Studied vector spaces, linear transformations, orthogonality, eigenvalues and eigenvectors, normal forms for complex matrices, positive definite matrices and congruence.
Algebra II & I: Studied trigonometric identities (cosines, double angle, and others), reciprocal ratios, rotations, radians, Pythagorean and quotient identities, rotations, matrices, coordinate geometry (circles, ellipses, hyperbolas), quadratic equations/functions, powers and roots, complex numbers, polynomials and factoring, systems of equations/inequalities, graphs/functions (graphing functions, slopes).
Algebra 2
Algebra 2
Math Courses Completed in College:
Calculus III & II: Studied functions of several variables, vectors, partial derivatives and multiple integrals, techniques of integration, improper integrals, differential equations, infinite series, conic sections, curves in parametric form and polar coordinates.
Calculus I: Studied algebraic and transcendental functions, continuity and limits, derivatives and anti-derivatives of algebraic, trigonometric, exponential and logarithmic functions. Relative and absolute maxima and minima, points of reflection, evaluated integral by use of the fundamental theorem of calculus.
College Algebra: Studied real numbers, graphs, theory of functions, sinusoidal equations, and their applications to science.
Linear Algebra: Studied vector spaces, linear transformations, orthogonality, eigenvalues and eigenvectors, normal forms for complex matrices, positive definite matrices and congruence.
Algebra II & I: Studied trigonometric identities (cosines, double angle, and others), reciprocal ratios, rotations, radians, Pythagorean and quotient identities, rotations, matrices, coordinate geometry (circles, ellipses, hyperbolas), quadratic equations/functions, powers and roots, complex numbers, polynomials and factoring, systems of equations/inequalities, graphs/functions (graphing functions, slopes).
Prealgebra
Prealgebra
My experience in Pre-Algebra includes Principles of Algebra (Expressions, Integers, Equations and Inequalities), Rational Numbers (Operations & Equations), Graphs, Functions, and Sequences, Exponents and Roots, Ratios, Proportions, and Similarity, Percents, Foundations of Geometry (Two-Dimensional & Patterns), Perimeter, Area, and Volume (2-Dimensional & 3-Dimensional), Data, Probability and Statistics, Multi-Step Equations and Inequalities, Graphing Lines (Linear Equations & Relationships), Sequences and Functions, Polynomials & Operations.
Algebra II & I: Studied trigonometric identities (cosines, double angle, and others), reciprocal ratios, rotations, radians, Pythagorean and quotient identities, rotations, matrices, coordinate geometry (circles, ellipses, hyperbolas), quadratic equations/functions, powers and roots, complex numbers, polynomials and factoring, systems of equations/inequalities, graphs/functions (graphing functions, slopes).
Linear Algebra: Studied vector spaces, linear transformations, orthogonality, eigenvalues and eigenvectors, normal forms for complex matrices, positive definite matrices and congruence.
College Algebra: Studied real numbers, graphs, theory of functions, sinusoidal equations, and their applications to science.
Psychology