Mass is an amount of matter. Mass has inertia, which is the tendency of matter to stay where it is if it is not moving, or to keep moving at the same rate and direction if it is already moving. You could measure mass by an inertial massometer. Visualize a metal strip held tightly on one end and "twanged," or given a push to make it vibrate on the other end. It has a natural pitch to vibrate. If you were to put a mass on the end of that strip, you would change the pitch of the vibration. The change of pitch would make it possible to calculate the mass of the added object. This measurement of mass is completely independent of gravity, the way we often weigh a mass by comparing the push or force of the mass on a surface. Mass is a more accurate way of thinking of amount of matter compared to weight. The metric system is mass-based whereas the English system thinks in weight. Consider that an astronaut in near earth orbit has no weight because the gravitational attraction cancels inertia, but the mass of the astronaut remains the same. The metric root word of mass measurement units is the gram. Notice the difference between the "root word," gram, which is the basis for adding metric prefixes, and the system base of kilogram, the mass unit of the S.I. metric system.

if (isMyPost) { }