The unit circle is one of the most important concepts to understand in Trigonometry.

As a tutor who emphasizes understanding and comprehension over memorization, I try to make it as easy as possible for my students.

Here's the way I like to look at it:

1) First, realize that the unit circle is simply a few points drawn on an graph with an x-axis and a y-axis.

2) Recognize that there is an overall pattern.

- Every 90 degrees (0, 90, 180, 270) is a combination of 0 and 1 (positive and negative).
- Every 45 degrees (45, 135, 225, 315) is √2/2 (positive and negative).
- Every 30 degrees (30, 60, 120, 150, 210, 240, 300, 330) are combinations of 1/2 and √3/2 (positive and negative).

This means that you only have to remember three numbers: 1/2, √2/2, and √3/2 (positive and negative).

The first quadrant (0-90 degrees), has all positive numbers, just like you'd expect in any other graph.

The second quadrant (90-180 degrees), has positive y-values (sin values) and negative x-values (cos values), just like you'd expect in any other graph.

The third quadrant (180-270 degrees), has all negative numbers, just like you'd expect in any other graph.

The fourth quadrant (270-360 degrees), has negative y-values (sin values) and positive x-values (cos values), just like you'd expect in any other graph.

So the hardest part is to remember when your 30 degree angles will be 1/2 or √3/2. The way I like to think about it is that we know that √3 is greater than 1. So when you look at a graph of the unit circle, the 30 degree angles will either be wide and short or tall and skinny. The longer side will always be √3/2 and the shorter side will always be 1/2.

**ALTERNATIVELY,**

You can use a

**simpler, easier to remember shortcut**that I figured out recently which goes like this:0 degrees: √0/2 (which = 0)

30 degrees: √1/2 (which = 1/2)

45 degrees: √2/2

60 degrees: √3/2

90 degrees: √4/2 (which = 1)

As you can see, as you increase your angle, the pattern is that the radicand increases by 1 for each point on the unit circle.

I hope this helps!

## Comments