Search 82,137 tutors
FIND TUTORS
Ask a question

Answers by George C.

Stoichiometry: C3H8  +  5O2  -->  3 CO2  +  4 H2O PV  =  nRT ,  V = nRT/P, (38.8)*10^3 g  C3H8  =  879.9 mole C3H8 reacts with                                 5*(879...

f(t) = e^-(t-x)  sin x dx, Using Euler’s identity, e^im = cos m + i sin m, integrate using the exponential, and take the imaginary part (Im) after integration. f(t) = e^-(t-x) * (e^ix) dx = e^(-t + x + ix) = e^-t * (e^(1 + i)x) dx int f(t) = int [0, t] e^-t * (e^(1...

e^(-10s)/(s(s^2+3s+2)) Factor out e^(-10s) for partial fraction decomposition. 1/(s(s^2+3s+2))  =   1/ s(s+1)(s+2)  =   A/s  +  B/(s+1)  +  C/(s+2) Using the Heaviside coverup method. when s...

Another method, that involves less writing is the Oliver Heaviside coverup method.  Google it and it's well explained.  Just another instrument in your armamentarium for solving partial fraction decomposition.

dx/dy  +    2x  -   (1/y)e^(-2y)  =  0 dx/dy  +   2x   =   (1/y)e^(-2y) x'      +     2x   =   (1/y)e^(-2y) I.F. = e^2y x ...

The absolute value, or modulus of the number z = a + bi is defined by |z| = √(a² + b²) |z1 + z2|  = |(a1 + a2) + (b1 + b2)| = √[(a1 + a2)² + (b1 + b2)²] |z1 + z2|² = (a1 + a2)² + (b1 + b2)²

y'+(1/2)y=2cos(t) vy' + 1/2 vy  =  2 v cos t                 Let  1/2  v  = dv/dt = v' (vy)'  =   2 v cos t                                      ...

Find dz/dx? (answer)

x-z=arctan(yz) 1 - (dz/dx) =  (y(dz/dx)/(1 + (yz)^2) 1  =  (dz/dx)((1 +  y/(1 + (yz)^2))) dz/dx  =  (1 + (yz)^2)/(1 + y + (yz)^2)    

 sin x = (e^ix – e^-ix)/2i Let sin x = -4 + sqrt2/2 = k = (e^ix – e^-ix)/2i 2ik = (e^ix – e^-ix) (e^ix – e^-ix) –2ik = 0 e^2ix – 2ike^ix –1 = 0 Let u = e^ix u^2 – 2iku – 1 = 0, u = (2ik ± (((-2ik)^2 – 4(1)(-1))^(1/2))/2 (-2.586i ± 1.64)/2 u=  e^ix  ...

f = ye^x(x)+cos(x).             Subscripts are  tedious.  Let f(xn) be the nth derivative wrt  x. f(x1) = y(xe^x + e^x) - sin x f(x2) = y(xe^x + 2e^x) - cos x f(x3) = y(xe^x + 3e^x) +...

3 vectors defining the plane are ,<2, 0, 0>, <0, 3, 0>, <0, 0, 1> x1 - x2= <2, -3, 0> x1 - x3= <2, 0, -1>  i         j          k 2       ...

F=<zx^2, z(e^xy^2)-x, x*ln (y^2)> From the paramaterization,  F(r(t)),  <  0,  -cos t,  (cos t) ln (sin t)^2>, (everything multiplied by z vanishes) r'(t) = i  (- sin t) dt   +  j  (cos t) dt + k (0) Int [...

= (1/cos x   +    sin x/cos x) dx = (1 + sin x)/cos x   dx = (1 + sin x)(1 - sin x)/(cos x)(1 - sin x)   dx = (1 - (sin x)^2)/(cos x)(1 - sin x)  dx = (cos x)^2/(cos x)(1 - sin x)  dx  =...