Arturo O. answered 04/19/17
Tutor
5.0
(66)
Experienced Physics Teacher for Physics Tutoring
I will work this out in the perifocal coordinate system.
r(φ) = a(1 - e2) / (1 + e cosφ)
r(φ) = distance from center of moon to satellite
a = semi-major axis
e = eccentricity
φ = true anomaly
c = distance from center of moon (at a focus) to center of ellipse = ea
hp = height at perigee = 206 km
ha = height at apogee = 943 km
R = radius of moon = 92 km
We need to figure out a and e.
a = c + R + hp = ea + R + hp
e = (a - R - hp) / a
2a = ha + 2R + hp = [943 + 2(92) + 206] km = 1333 km
a = (1333 km)/2 = 666.5 km
e = (666.5 - 92 - 206) / 666.5 = 0.5529 < 1 (e < 1 for an ellipse)
a(1 - e2) = 666.5(1 - 0.55292) km = 462.75 km
r(φ) = [462.75 / (1 + 0.5529cosφ)] km